Response Dynamics Logo
Since 1984 - Now in Our 32nd Year
Contact Us:
Reuben Hale, P.E.
Ph: (510) 507-1300
Reuben@ResponseDynamics.com

HOME - Company Overview

High Tech Consulting

Heavy Industry Consulting

Facility Design Consulting

Product R&D

Emergency Diagnosis

Vibration Testing & Design

Diagnostic Testing

Site Testing & Analysis

Vibration Monitoring

Construction Monitoring

Modal & Resonance Testing

Finite Element Modeling

Sensitivity Testing

Vibration Isolation

Servo Control

Acoustic Noise / Sound Tests

Strain Gauge Testing

Shake Table Testing

Thermal Testing & Design

Magnetic Field / EMF / EMI

About Us

Back Stop Start Next
HOME - Company Overview
Company Overview

Response Dynamics Vibration Engineering, Inc provides unmatched expertise in advanced vibration analysis, testing, diagnostics, and engineering design. We combine our engineering test and analysis expertise in areas relating to vibration, motion control, acoustics, thermal, strain, flow, and magnetic field, with over 30 years of system troubleshooting and design experience. We love to educate people on our work and the principles and concepts behind what we do. Feel free to call us with any questions that may relate to a your system or facility problems. The following is a brief summary of our areas of expertise and our approach.

Industries and Projects Spanning 9 Orders of Magnitude

We have engineered solutions for a myriad of systems, from sub-nanometer level disturbances of scanning electron microscopes, interferometers, and atomic force microscopes, to micron level motions of giant mountain top telescopes, to centimeter operating deflection shape analysis of offshore oil rigs, to name a few. (See our Client list by industry).

We have worked on hundreds of systems and facilities for High Tech Industries such as: Semiconductor, Biotechnology, Pharmaceutical, Nanotechnology, Medical Device, Communication, Aerospace, and Defense. We work nationally, and worldwide, to improve performance, solve imaging, measurement, and vibration/acoustic design issues.

We offer engineering consulting services to numerous companies in the development of wafer fabrication and metrology equipment, biotech test and imaging systems, and other sensitive devices. Our extensive experience with micro-vibration and acoustic issues in the structural dynamics of sensitive high-resolution manufacturing, testing and imaging systems, makes us leaders in the field of sub-micron and nanometer scale technology.

In Heavy Industry Consulting, we have worked on hundreds of systems and projects that include: Transportation, Power Generation, Food Industry, Automotive, Paper, Mining, Oil, Agriculture, Construction, and other industries, to characterize complex (often multi variable) problems, to design tests to diagnose the root cause of the issue, and to provide engineered solutions.

Diagnostic Testing

Response Dynamics has made Diagnostic Testing our bread and butter for over 30 years. We do this work well because we enjoy, and are well grounded in basic applied physics, digital signal processing, with advanced expertise in structural dynamics and how it relates to vibration and acoustic noise issues on a myriad of levels.

See our discussion on Resonance Testing and Modal Analysis, as well as Vibration Characterization

We are expert in Modal Analysis and Operating Defection Shape Testing (ODS), steady state and transient analysis, with literally decades of experience developing our detailed methodologies that produce meaningful results. Fundamental to this type of testing are Frequency Response Functions (FRFs). We design tests and/or analyse frequency response functions (FRFs) almost on a daily basis. These FRF measurements form the basis of modal analysis and the theory of linear structural dynamics. We are fluent in spectral analysis and the digital signal processing inherent in the measurement process and thus we can spot problems before they corrupt a whole data set, or an entire project.

Non-linearities exist in all physical structure and are often not a problem. However when they are involved, we know how to spot them and deal with these unique dynamics. While testing, the choice to use electro-magnetic shakers, force hammers, or known inertial loads as force inputs depends on the nature of the system dynamics, the response amplitudes, and the transient/steady state characteristics of the vibration issue. We have refined these skills for over 30 years.

The physical principles of structural dynamics, optics, thermodynamics, and acoustics apply to structures and systems large and small. The variety of our projects keeps our work interesting, after all these years, even as we apply the same fundamentals again and again.

We enjoy the challenge of experimental design. From our initial assessment, asking the right questions at the start of investigation, and designing the experimental setup to extract meaningful results, we can quickly show how a system is moving and reacting making the problem visable to the engieering team. Whether it involves testing in the cleanroom instrumenting a delicate optical interferometer using a tiny non-contact capacitive sensor, or climbing through a power plant structure running hundreds of feet of cable to an accelerometer array to instrument and trouble-shoot a Turbine Isolation Issue using ODS Testing. We focus on the important dynamic parameters of the system and its boundary conditions, and design tests to prove or disprove hypotheses. There are countless ways to create erroneous results. It takes effort and experience to extract meaningful results, interpret them, and then engineer creative and sound solutions.

We are well versed in instrumentation, digital signal processing, and spectral analysis. We use our specialized skill set, and a vast selection of instrumentation that we have collected for over 3 decades, to design tests and solve tricky problems from nanometer disturbances in interferometers, to thermal and acoustic issues in military control hardware, to magnetic/acoustic/vibration issues in scanning electron microscopes, to turbine isolation issues in hundred megawatt power plants, to optics vibration and servo control issues in sub-micron genomics microscopes, to giant mountain top telescopes on the cutting edge of active astronomical imaging, to name a few - but solving vibration problems requires more than just the right test equipment. Most importantly, it requires testing methodologies and insight developed with many years of seasoned experience.

Multi-Variable Testing

Multi-variable testing is usually necessary to really get a handle on an issue involving multiple disciplines of physics. We design tests to measure static and dynamic strain, static and dynamic pressure, acceleration, velocity, displacement, magnetic field, temperature, fluid flow, and light intensity, to name a few.

Real world problems involving the measurement of multiple variables require an understanding of the physics of the coupling between them, as well as the physics and limitations of the measurement instrumentation. Problems in different frequency ranges necessitate unique approaches involving instrument selection, mounting dynamics, cabling, and coupling with other structures and media.

For instance, when a consumer product is too noisy, a bedside medical device for example, thermal analysis and optimization of the cooling system will often be part of the acoustic solution, in addition to surface damping treatments, motor vibration isolation, etc. In debugging scanning electron microscopes (SEMs) issues, disturbances due to acoustic excitation, floor vibration, control instability, frame resonances, thermal drift, and magnetic field all superimpose to create a confounding image disturbance. Additionally, each of these disturbances can be aliased. We have years of experience untangling overlapping disturbances involving multiple sources to make the issue understandable, and allow for educated decisions when weighing different solution strategies.

Meaningful Test Data, Knowing Good Data From Bad

We use our testing expertise, as well as various methods of analytic, computer modeling and Finite Element Analysis (FEA) to make sense of the system problems so that we will have confidence that our understanding is indeed correct (or sufficiently correct). We also make an effort to know what we don't know by considering measurement error, instrumentation noise, resolution limitations, and non-linear behaviors. See our discussion on Critical Product R&D

It is in the nuts and bolts of knowing good data from bad that brings indispensable value to our analyses.

We most often characterize a problem first and work from known conditions, and stay in “the known” as we proceed by making sense of what we observe as we move forward. We test and analyze the change in dynamics we are trying to create in real-time, on site, and often make changes to our experimental test plan on the fly as we discover how a system is actually behaving. In doing so we often get meaningful results from which we can make sound engineering decisions in a short time frame. We do NOT make measurements and spit out data.

We very often get our hands dirty and build proof-of-concept “fixes” on site, or back in our shop, to quickly test a “design-fix” concept. We do this prototype testing carefully, with 30 years of structural dynamics experience, always working hard to test and keep an accuate understanding of the current system dynamics and the boundary conditions as we make changes. However, as so often happens to our clients, when quick and dirty fixes are attempted by other engineers with little structural dynamics experience, confusion, delay, and uncertainty regarding the design of the experiment often result. A faulty test often leads to the wrong conclusion and drives the wrong action. Valuable developement time is often wasted, and the issue soon becomes an emergency. See our discussion on Critical Product R&D.

We have the experience to quickly analyze past test methodologies and explain for the team what has been done well, and what needs improving, tweaking, or additional attention to a particular dynamic parameter. This is important for getting an engineering team all on the same page by making sure everyone understands the problem, what has been done, and how to move forward. These unique abilities have brought us long lasting working relationships with the majority of our clients.

Starting From Scratch, The Design Phase, Facility and Product Development

We enjoy being part of the team in the design phase. We help get the design right from the 1st alpha system to avoid last minute emergencies. We have recently worked in the design phase on a table top scanning electron microscope, a table top genomics ID system, and worked though the design and test of a cutting edge bio-tech imaging system with 25 nm resolution that will perform on upper floors of light construction. We have quieted noisy dialysis machines, eye surgery equipment, surgical robots, semiconductor imaging tools, and multi-ton solar tracking arrays.

We also work with architechs and engineering groups on Facility Design for unique acoustics and vibration needs. These include state of the art semicondutor research facilities, university research buildings, tech-group collaborative office spaces, and others. Considerations that require our expertise include HVAC sourcing and distrubution design, mechanical room design, equipment mounting, sensitive tool placement, floor system design, wall and partition design, sound masking, acitive cancelation, passive acoustics (added reverberation, or added sound abosrption in particular frequency bands).

For High Tech Facilities (such as: Semiconductor, Biotechnology, Pharmaceutical and Nanotechnology facilities), we not only have the expertise in the testing the building floor dynamics, vibration, and acoustics, but we understand the needs of the high resolution sensitive equipment used in these facilities because we design, fix, and test this equipment. We perform the Sensitivity Testing and write the specifications for some of the high resolution imaging and testing systems used in these industries. Addtionally, we have spent decades troubleshooting facility issues and thus we have intimate knowlege of what issues to expect and how to prevent them. We translate that knowlege into design specifications and work with the design team on these critical design details.

Some of the clients we have worked with over the years now manage engineering groups. It is these past clients that most often call us in the design phase of the product where we provide very valuable input in design reviews helping to show where potential pits falls may found, and where great improvement may be had by the adjustment of a few engineering details. Our input in the design phase will save valuable development time and resources, and has proven to be key to the sucess of many product efforts.

In product development, we provide assistance at several points along the product development cycle. Firstly, we provide assistance and guidance in the development of the conceptual and detailed design (often using a combination of analytic, numerical, and finite element modeling). Our experience allows us to see potential pitfalls and find winning solutions, as part of your team, in the start of the design process. This is critical to staying on budget, on schedule, and meeting performane goals.

Once the prototype has been built, we perform measurement and analysis of the dynamic response of these systems to expected disturbances, including both internal sources (such as X-Y stage stopping transients) and external sources (such as floor vibration and acoustics noise). In addition, determination of system resonances by modal testing and analysis often provides critical design information. If necessary, the design is then improved by making appropriate changes in structural design, Stage Control, Vibration Isolation, and Damping Treatment.

We work with engineering teams to identify and design solutions. Often those solutions may involve subtle modifications that affect the stiffness of a subsystem, its mass distribution, and an Effective Damping Treatment. We may also suggest modifications to control system parameters, or other system changes. We use our testing and analysis to explain why a system performs as it does, and why the modification will improve performance. Our experience allows us to be both efficient and thorough, minimizing troubleshooting, tool time, and prototype iterations.

We perform vibration Sensitivity Testing to determine the specification for allowable levels of Facility Vibration (and acoustic noise) for the system's installation. We also perform Site Evaluation measurements to verify that the proposed installation site (in the end-user's facility) provides an acceptable vibration and acoustic noise environment for the successful operation of the sensitive system. If facility problems are identified we often work with the facility owners to identify and solve the problem or to find a suitable alternative site for the system. The solution may involve reduction/isolation of the disturbance source, active cancellation of the disturbance at the sensitive tool, modification of the floor system, or tool improvement (such as with tuned mass dampers).

Some of the metrology equipment that we have worked on are SEM tools, FIB tools, TEM tool, AFM (atomic force microscope) systems, stylus profilometers, wafer steppers, interferometers, electron microscopes, CD SEM tools, elipsometers, and SPM tools which are manufactured by the companies such as KLA-Tencor, Veeco, Applied Materials, Rudolf Technologies, Nikon, Wyko, Zygo, Sensys, JEOL, Amray, Schlumberger, Thermawave, FEI, and Nanometrics.




some text

Back to Top

Copyright © 2016 Response Dynamics